98年2月24日台灣師範大學物理系蔡志申教授蒞校演講---

題目: 奈米科技的關鍵技術: 表面科學與量子力學----精采內容摘要

大綱:一、什麼是「奈米」?什麼是「奈米科技」?

二、奈米材料的基本概念與性質

三、奈米材料及其特殊性質

四、奈米材料的製作

五、奈米尺度的表面分析技術

六、結語

Milestones in Nanoscience--- 奈米科學的里程碑

4000 BC Democritus "Atom"

1905 Einstein "Theory of Brownian Motion"

Sugar Molecule ~1nm

1931 Electron Microscope Invented

1951 Muller Field ion microscope, see an atom

1959 Feyman lectured "There's Plenty of room

at the bottom"

1968 Molecular Beam Epitaxy *

1981 Binig & Rohrer STM *

1985 Fullerene Discovered *

1986 Drexler "Engines of Creation"

1989 Eigler Wrote "IBM" using Xe *

1990 Iijima discovered CNT *

1994 Adleman "DNA Computing" *

1997 IBM "Magnetoresistive head"

1998 Dekker created Transistor from CNT

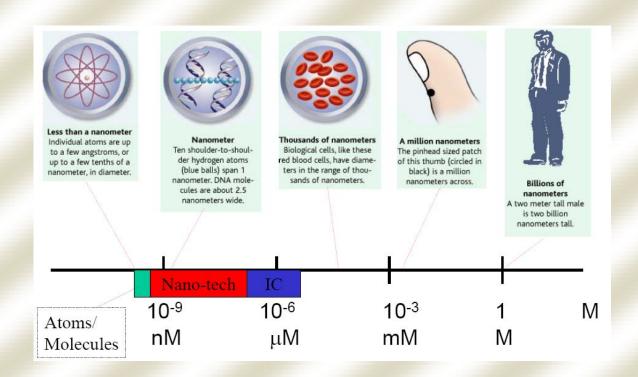
1999 Tour/Reed "molecular switch" *

2000 Clinton announced NNI *

2001 First nerve cell-silicon microchip built

充滿無限可能的小魚: 斑馬魚在神經科學上的應用

感謝台灣師範大學物理系<u>蔡志申</u>教授、<u>傅祖怡</u>教授及表面物理實驗室全體 師生全力協助本校物理專題之活動



2月25日九年和班四位同學參觀台灣師範大學表面物理實驗室

一、奈米有多小?

第一次工業革命: 十八世紀, 蒸汽機, 機器取代人力.

第二次工業革命:十九世紀末,發電機與內燃機,電力使用.

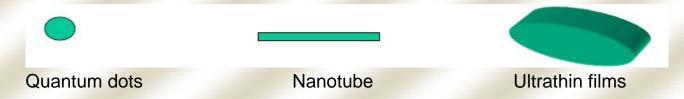
第三次工業革命:二十世紀中,電腦計算機,資訊技術.

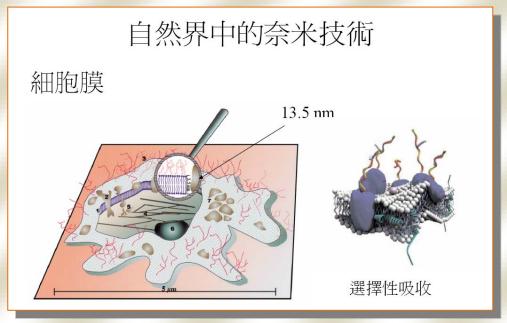
第四次工業革命:二十一世紀,輕薄短小高速精準---- 奈米科技

· 前美國總統科技顧問----Neal Lane

假如有人問我:在可預見的未來,哪個科技領域會有突破性的進展? 我的回答將是奈米科技"。

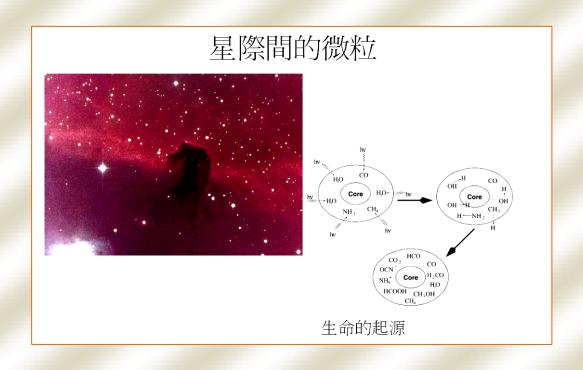
• 1998年諾貝爾物理獎得主-- Horst Stormer

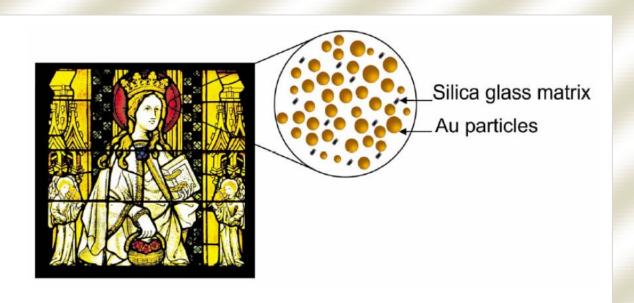

"奈米科技提供了我們能操控原子和 分子的工具。由於所有的物質都是以 它們來建構的…創造新事物的可能 性,顯得無遠弗屆"。



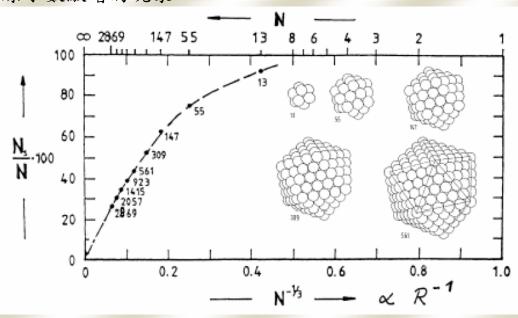
二、奈米材料的定義

1. 任何材料的尺寸, 三個維度之中, 至少一個維度的長度是奈米級(也就是介於1~100 nm之間), 就稱之為奈米材料。


Nano-technology? Nano-sciences?



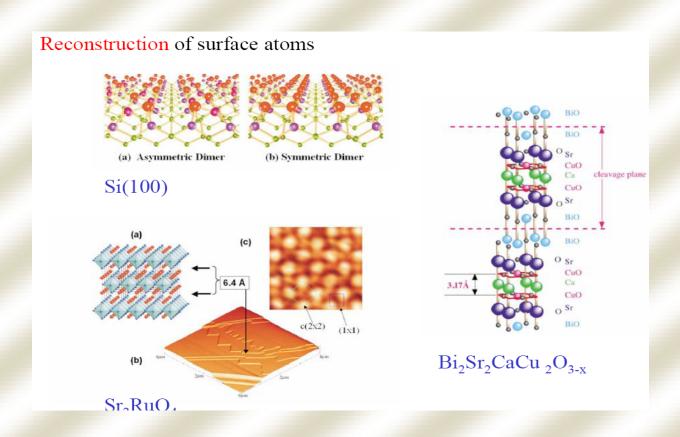
當今科技元件往輕薄短小發展-----奈米化



在德國科隆中世紀時代的著色玻璃,由於金顆粒溶在玻璃溶液中的緣故,當光穿透時呈紅色.

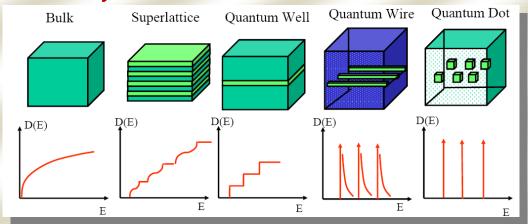
三、奈米材料特殊的性質

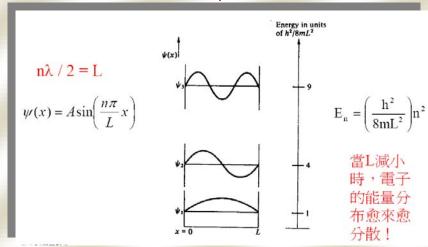
- 小於100 x 10⁻⁹ m
 - 單原子/少數原子的聚集
- 量子現象 (1-30 nm)
- 新材料
 - 超高的表面積
 - 低缺陷
 - 階層(Hierarchical)性的結構: 由下而上 與由上而下(bottom-up and top-down)
- 比細胞還小的尺度
 - "生物機械(生物馬達)": ATPase...
- 大量的元件(Large numbers of components)
 - 高密度技術
 - 複雜系統
- 2. 奈米材料的性質與特徵
- (1) 表面效應:對稱性的破壞,造成材料結構,光、電、磁等物性與塊材材料物性截然不同.
- (2) 量子效應:能階不連續,量子尺寸效應,量子穿隧效應
- 3. 表面原子數激增的現象



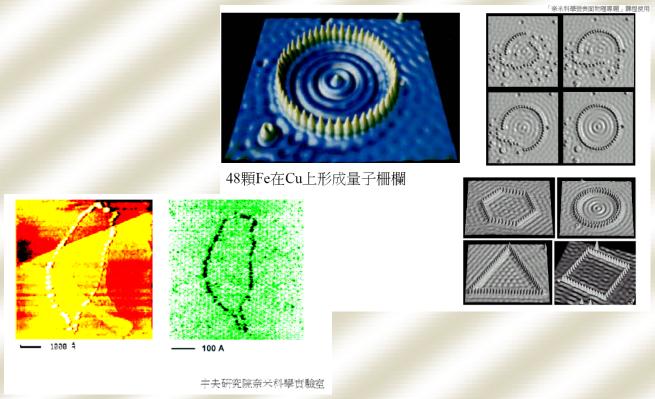
粒子越小,裡面的原子數越少,暴露在表面上的原子所占的比率就越高。

4. 由於奈米粒子體積非常小,材料表面原子與整體材料原子的個數比例值就變得非常顯著,而固體表面原子的熱穩定性與化學穩定性都要比內部原子要差的多,所以表面原子的多寡代表了催化的活性,即大表面積是一個好觸媒材料的基本要素。

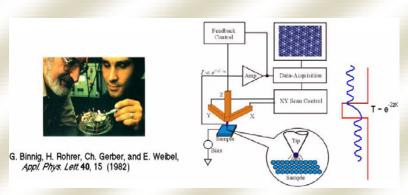

由於表面原子配位數不足和高的表面能,使這些原子易與其他原子相結合而穩定下來,故具有很高的化學活性。

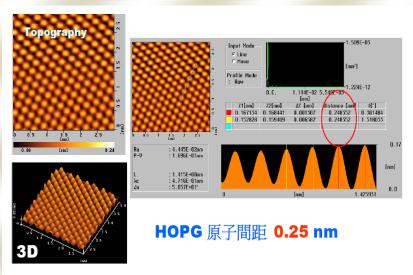


5. 量子效應的出現

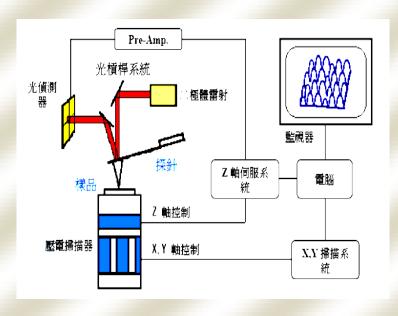

Density of States of Various Quantum Structures

能量量子化(量子局限效應 quantum confinement effect)


6. 原子操縱術

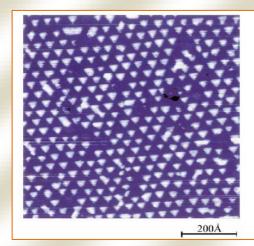

四、奈米結構的檢測

姑且不論如何使用這麼小的粉粒,人的視覺在這時已經無法看到 它們,必須要藉助於先進的顯微鏡了!


1. 掃描穿隧顯微鏡 (STM)

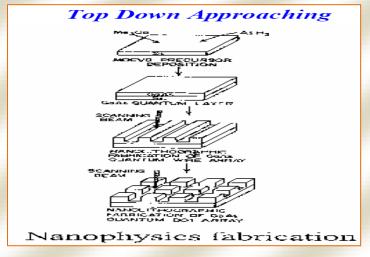
掃描穿隧顯微鏡是利用一極 細的金屬尖針接近具導電性 樣品的表面進行掃描,再根據 量子穿隧效應來獲得樣品表 面上的原子結構圖像。

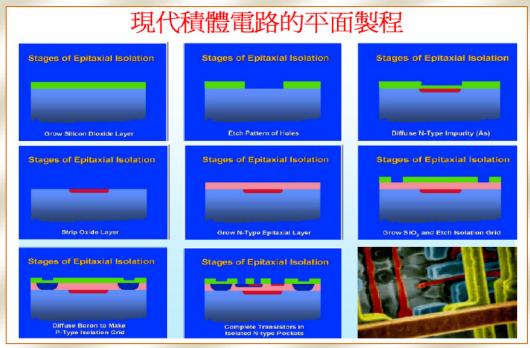
2. 原子力顯微鏡 (AFM)

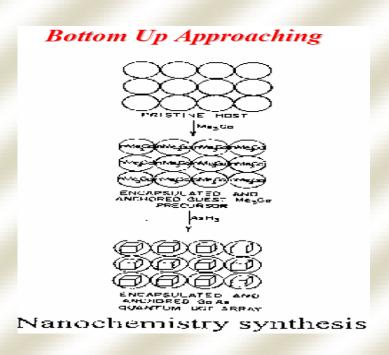


當以尖針掃描樣品表面時,尖 針與樣品表面原子間的作用力所 造成的微小偏轉可被偵測出來,而 獲得其表面原子排列的圖像。

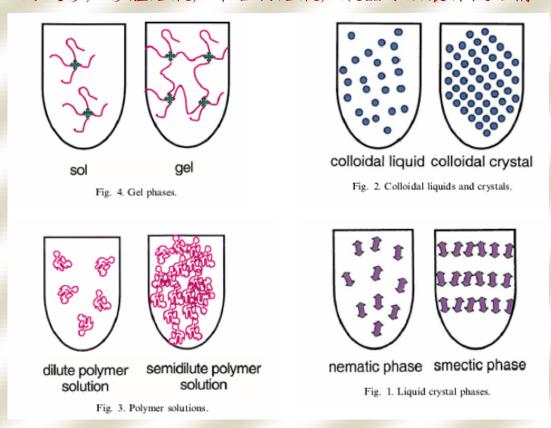
原子力顯微鏡與掃描穿隧顯 微鏡間主要不同在前者改變了固 定尖針的構造。因此原子力顯微鏡 對不導電的樣品也可以偵測,能彌 補掃描穿隧顯微鏡的不足

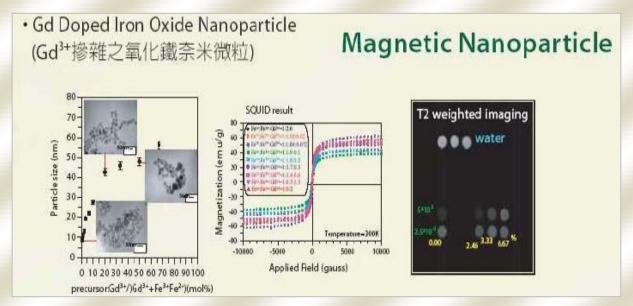

五、奈米材料的製作


1. 改變基底特性後, 再鍍上材料可形成更多樣的材料.


Fe grown on Cu bilayer/P(111) forms periodic array with a density of 10 Terabit/in².

2. 物理方式通常利用微影蝕刻 (lithography)、乾濕式蝕 刻(etching)等蝕刻方法, 即所謂的由上而下(top down)的方法來製備奈米粒 子。




3. 化學方式通常所用的方法是利用由下而上(bottomup)的方法,也就是以原子或分子為基本單位,利用溶液微胞侷限、電解、生物模板、溶膠-凝膠、化學氣相沉積(chemical vapor deposition)等方法,漸漸往上成長成奈米粒子。

用凝膠, 膠體溶液, 聚合物溶液, 液晶方法製作微結構

4. 奈米科技生醫應用

開發新型之奈米微粒,經專一性生物物質修飾後可作為體內特定 目標之追蹤劑、造影劑或藥物載體,用於疾病之診斷或治療。奈米微 粒的功能可由體外驅動。

六、結 語

- 奈米科技乃根據物質在奈米尺寸下之特殊物理、化學、和生物性質或現象,有效地將原子或分子組合成新的奈米結構;並以其為基礎,設計、製作、組裝成新材料、器件、或系統,使它們產生全新的功能,並加以利用的知識和技藝。
- · 奈米科技是二十一世紀的經濟新希望,它是改變產業結構、生活方式的第四次工業革命。
- 在可見的未來裡,「高科技製造」的絕大部份重要創新,都將來自 奈米科技。有人預測,奈米科技對人類的影響將遠超過半導體與資 訊科技的影響。
- ・奈米技術引領科技發展的大躍進,是維持經濟發展不能忽視的科學 革命,也是提升「國家競爭力」的重要技術。