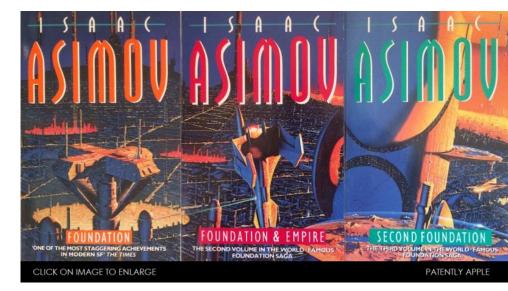
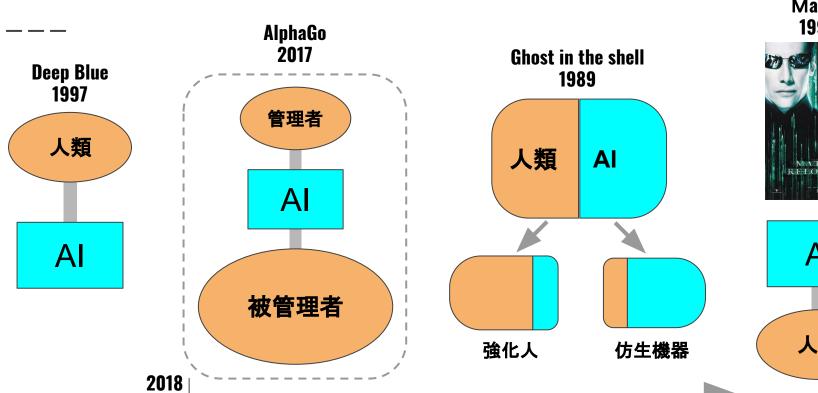
一個工程師看AI

Nov 2018 / 高中第8屆校友林繼周

攻殼機動隊 (Ghost in the shell)- 1989士郎正宗


- 棲息在人造軀殼裡的 人類意識
- 相對於由人工智能驅動的仿生機器
- 探索角度
 - 社會的
 - 哲學的

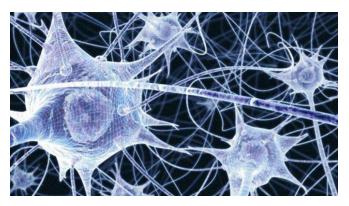

艾西莫夫-1950 機器人三定律

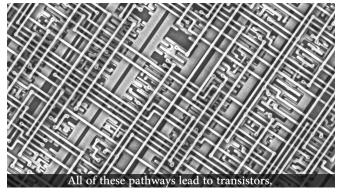
- 第一法則機器人不得傷害人類,或坐視人類受到傷害;
- 除非違背第一法則, 否則機器人必須服從人類命令;
- 3. 除非違背第一或第二法則, 否則機器人必須保護自己。

The Galactic Empire Trilogy

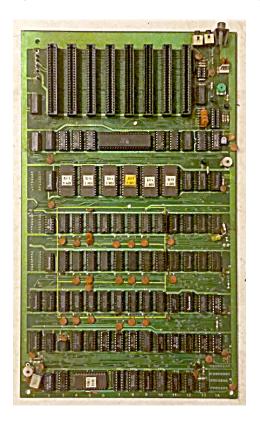
AI和人的關係

駭客任務 **Matrix** 1999

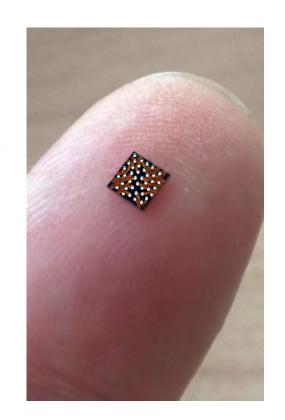




人類


「碳智能」和「矽智能」的本質比較

	人腦	人工智能	
基本單元	神經元	半導體邏輯閘	
傳導	神經突觸	金屬	
結構	三維	二維平面	
大小	1.6公升	10x10mm	
單元尺寸	2.7um	20nm	
單元數	800億(10個0)	1兆(12個0)	
形成	基因和演化	製程進步	
	不可複製	可複製	



技術進步的幅度

37年

	1981	2018	倍數
速度	4Mhz	3Ghz	750
記憶體	64KB	16GB	260000
器件尺寸	3um	7nm	400
邏輯單元數	5000	800M	160000

技術的演進

電子技術

- 電晶體
- 積體電路製程
- 傳感器技術
- 動力機械
- 仿生學
- 生物信號分析

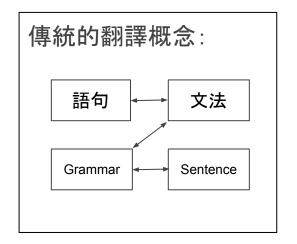
人工智能

- 電子計算機
- 超大型積體電路
- 神經網路
- 專家系統/回歸分析
- 機器學習/深度學習
- 人機神經介面

超級電腦Watson

圖靈測試:機器是否能表現出與人等價或無法區分的智能?

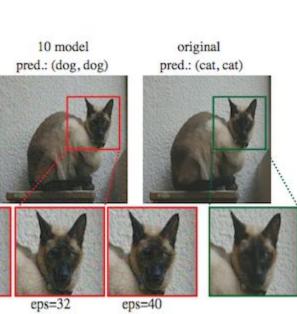
IBM開發, 具有4TB資料庫的問答系統, 在2012年美國 Jeopardy機智問答節目打敗人類最高獎金和連勝記錄冠軍:


- 自然語言處理
- 知識表示
- 訊息檢索
- 自動推理
- 機器學習

DeepBlue vs AlphaGo

- 1997年5月, IBM支持的深藍計畫第一次打敗人類西洋棋王
- 2016年3月, Google研發的AlphaGo以4:1打敗韓國第一職業棋手
- 2017年5月, 強化版的AlphaGo以3:0打敗中國第一職業棋手
- 2017年10月, 自我學習版的AlphaGo Zero以100:0打敗AlphaGo
- 歴史意義:
 - DeepBlue標誌著"專家系統"的終點
 - AlphaGo標誌著"機器學習時代"的起點

Google翻譯

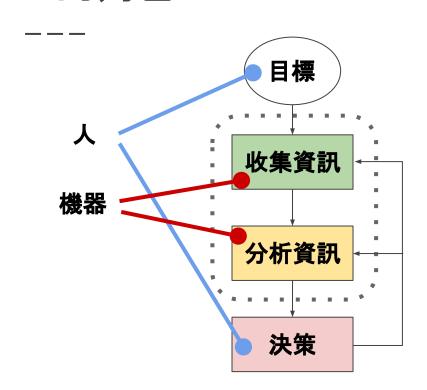

二義性問題:

- Turn left? Right!
- Are you free?

大數據方式:

- 以聯合國文件為 資料來源
- 統計方法
- 神經網路

認知就是預測

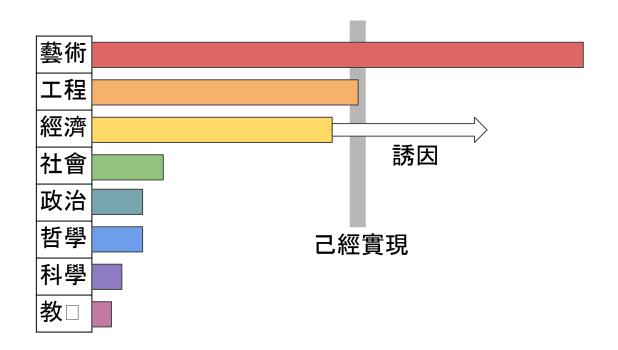

人工智能研究的本質改變

- 設計 vs 模仿
- 決定性 vs 模糊計算
- 暴力搜索超越聰明設計
- 實驗科學取代理論推導

奇點預言

- Kurzweil在2015年預言,到2029年, 電腦將具備情感智能,能聽懂笑話, 理解情緒。
- 他在2017年再度預言,在2047之前 會出現"超級智慧機器,具備人腦10 億倍的運算能力。

AI的角色


思考AI問題的角度

藝術 科學 哲學 AI 教□ 工程 經濟 社會 政治

藝術	文化
哲學	宗教, 道德
教□	輔助學習
社會	地位, 隱私
政治	法律,權利義務
經濟	商業利益, 供需結構
工程	醫學,材料,晶片
科學	生化, 演化, 認知

AI在各領域的進展

AI前景的爭議

樂觀的	悲觀的	
祖克柏	蓋茲	
李開復	霍金	
馬雲	馬斯克	

- 馬雲:人類一直擔心會被技術取代,問題其實是自信心和想像力的缺乏。
- 李開復:我們將進入一個富足的豐產時代,因為AI可能幫助人類有史以來第一次,消除貧困和飢荒。

未來的發展空間

- 應用方面:訓練一複製模型
 - 低成本,低耗能,小型化的應用場景
 - 神經和電的界面
- 理論的深入研究
 - 心理學, 生理學, 神經科學, 哲學
 - 了解心智活動的本質
 - 認知、思考、意識

年輕人面對的挑戰

- 如何訓練和保持思考能力?
- 如何評價資訊的來源?
- 如何利用科技而不是反過來?
- 如何獨立的思考?
- 如何跳出原來的框架?
- 如何因應典範轉移的時代?
- 如何找到自己的定位?

新世界裡的舊問題

- 分配不均
- 資源耗竭
- 環境污染
- 阻止戰爭?消滅飢餓?
- 生存意義的問題

AI要如何解決最這些重要的問題?---- 還不知道!

我個人的配備

- 好奇心
- 數學和物理
- 歴史
- 哲學和宗教

Q&A